AUTHOR TITLE

INSTITUTION
SPONS AGENCY
PUB DATE
GRANT
NOTE
EDRS, PRICE DESCRIPTORS

Rheinboldt, Werner C.
Horner's. Scheme and Related Algorithms. Aṕplications of Computer Science. [and] Algorithms for Finding Zeros of Functions. Computer Science. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 263 and 264: Education Development Center, Inc., Newton, Mass. National Science Foundation, Washington, D.C. 80
SED-76-196i5-A02
59p.
MF01 Plus Postage. PC Not Available from EDRS. *Algorithms;. *ollege. Mathematics; Computer Programs;
*Computer Science; *Computer Science Education;
Higher Education; Instructional Materials; *Learnang Modules; *Mathematical Applications; Problem Solving; Supplementary Reading Materials
*BASIC Programing Language
IDENTIEIERS
ABSTRAC'
This material contains two units which view.
applications of computer science. The first of these examines Horner's scheme; and is designed to instruct the user on how to apply both this scheme and related algorithms. The second unit aims for student understanding of standard bisedtion, secant, and Newton methods of root finding and appreciation of their limitations and strong points.: An introduction to more recent root finding methods is also provided. Both moduless contain exercises, and answers to these problems are given athe conclusion of each unit. (MP)

UMAP
 MODULES AND MONOGRAPHS IN UNDERGṚADUATE MATHEMATICS AND ITS APPLICATIONS

MODULE ${ }^{20}$

Horner's Scheme and Related Algorithms

by Werner C. Rhenboldt

$$
=\frac{1}{4!} p^{(4)}(-1)
$$

Applicäions of Compúter Science
U.S. DEPARTMENT OF EDUCATION NATIONAL INSTITUTE OF EOUCATION EDUCATIONAL RESOURCES INFORMATION

This document has been reproduced as"
received from the person or organization orignating it
Minor changes have been made to improve "PERMISSION TO REPRODUCE THIS reproduction quality

- Pounts of view or opinnons stated in this docu ment do not necessarily represent offictal NIE position of policy

Intermodular Desc̀miption Sheet: UMAP Unit 263

Title: hORNER'S SCHEME ANO RELATED ALGORIthms

Author: Wierner C. Rheinboldt
Department of Mathematics and Statistics
University of Pittsburgh
Pittsburgh, PA 15261
Review Stage/Date: 'A IV 7/30/80
Classification: 'APP\& COMP SCI
Prerequisite Skills:

1. Definition of a derivàtive.
2. High school algebra.
3. Fundamentals of how to draw a flowchart.

Output skills';

1. Be able to apply Horner's and the related algorithms of the unit.

The Project would like to thank Charlès Votaw of Fort. Hays State University and Brian J. Winkel of Albion College for their reviews, and all other's who assisted in the production of this unit.

This"material was field-tested and/or student revipwed in pre- - < Jimináry form in class by Jónathtan Choaté of The Gröth Schól; Gerte B. יॄhase of Messiah Cotlege; Doñald G. Malm of Dakland University, and; Mary Hayward" δf Roberts Westryan College, and has been revised on, the

This s,material was prepared with the partial support of Nationial
Stience Foundation Grant №. SE076-19615 A02. Recommendatjons ex-
\therefore ", Apressed are those:of the author and do not necessarily reflect the fint views,rof the NSF or ithe sopyrigh holder.

HORNER'S SCHEME AND RELATED ALGORITHMS

by

> Werner C. Rheinboldt. Department of Mathematics and Statistics University of Pittsburgh Pittsburgh, PA 15261

TABLE OF CONTENTS

i. introduction
2. HORNER'S SCHEME

3. Implementatión of horner's scheme
6. .horner's scheme and the derivatives10
7. OUTLOOK 14
8. ANSWETRS TO EXERCISES 15

1. INTRODUCTION

Our basic problem is the computational evaluation of a polynomial

$$
\begin{align*}
p(x)= & a_{n} x^{n}+a_{n \cdot 1} x^{n-1}+a_{n-2} x_{1}^{n-2}+ \tag{1}\\
& \ldots+a_{2} x^{2}+a_{1} x+a_{0}
\end{align*}
$$

and its derivatives $p^{\prime}(x), p^{\prime \prime} .(x), \ldots, p^{(n)}(x)$ for a prescribed.varue $x=x_{0}$. Here the coefficients a_{n}, a_{n-1}, \ldots, a_{0} are given real numbers.

Let us consider first a simple cubic polynomial

$$
\begin{equation*}
p(x)=3 x^{3} \cdot 4 x^{2}+2 x-3 . \tag{2}
\end{equation*}
$$

For any given number x_{0} the evaluation of $p\left(x_{0}\right)$ does not present any principal difficulties. We may compute x_{0}^{2} and x_{0}^{3} and theq combine them together appropriately. sin an informal programming language this may be written as. the following algorithmm

$$
\begin{align*}
& \text { 1. Input }\left\{x_{0}\right\} \\
& \text { 2. } u:=x_{0} x_{0} \\
& \text { 3. } v:=u x_{0} \tag{3}\\
& \text { 4. } p:=3 v \cdot 4 u+, 2 x_{0}-3 \\
& \text { 5. Output }\left\{x_{0}, p\right\} .
\end{align*}
$$

(: $=$ is used to represent assignment of a value to a variable.)

Altogether there are five multiplications and three additions (or subtractions). For the general polynomial (1)'this approach would require the computations:
(4)

$$
\begin{aligned}
& u_{1}=x_{0}, u_{2}=u_{1} x_{0}, u_{3}=u_{2} x_{0}, \ldots, u_{n}=u_{n-1} x_{0}, \\
& p=a_{n} u_{n}+a_{n-1} u_{n-1}+\ldots+a_{1} u_{1}+a_{0},
\end{aligned}
$$

Thus altogether we need $2 n-1$ multiplications and n additions. Suppose that a particular computer uses a sec and $\mu \mathrm{sec}$ for any addition (or, subtraction) and
multiplication, respectively. Then our method (4) takes at least $(2 n-1) \mu+n \alpha$ seconds. Without question a prac: tical computer program would run longer than that, since it takes time to fetch and store the data, to control the loop involved in (4), and to.perform the input and output. But the overali time should be proportional to $((2 n-1) \mu+n \alpha)$. The next section shows that we can dot better than that.

2. HORNER'S SCHEME

How can we reduce the number of arithmetic operations in the evaluation of a polynonial? The clue is a suitable factoring of $p(x)$. In fact, (2) can be written as follows:

$$
p(x)=((3 x-4) x+2) x-3
$$

Now therẹ. are ọnly three multiplications and three additions. That does not appear to be much of a savings in this case but it does represent a big savings when the - degree of $p(x)$ goes up.

We shall discus's this approach of evaluatinga polynomial..in the form of a scheme for hand computation. Let a general cubic polynomial be given:

$$
\begin{equation*}
p(x)=a_{0} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} . \tag{5}
\end{equation*}
$$

We may rewrite it as

- 곡

$$
p(x)=,\left(\left(a_{3}^{\prime} x+a_{2}\right) x+a_{1}\right) x+a_{0} .
$$

To evaluate this for $x=x_{0}$ we use a table with three rows and four columns. Into, the first row we write the four coefficients $a_{3}, a_{2}, a_{1}, a_{0}$ (in that order), and into column 3, row 2 we place a zero. The rest of the boxes are initially blank.
(6)

The computation proceeds from the left-most column to the Yight and consists of looping through the following two.s - steps ${ }^{2}$ for $k=3,2,1,0: \cdot$
(a) Add the numbers in rows: liand 2 of column k

- and write the result into row 3 of the same column.
(b) For $k \geq 1$ multiply the number in row 3 of column'k by x_{0} and place the result into row 2 of column $k-1$.

This process is indicated by arrows in the Table (6) and the results are indicated in éach field. The final result in row 3 of the last colamn is the value of p. at the point x_{0}. This method of computing the value of a polynomial is called Horner's Scheme.

We give Horner's'scheme for our 'sperial polynomial (4) and two different values of x_{0} :

$x_{0}=-1$ | 3 | -4 | 2 | -3 |
| :--- | :--- | :--- | :--- |
| 0 | -3 | 7 | $\cdot-9$ |
| 3 | -7 | 9 | -12 |,$p(-1)=-12$

As another example. consider the quartic polynómial

$$
\begin{equation*}
p(x)=x^{4} \quad 2 x^{3}+x-1 \tag{8}
\end{equation*}
$$

Note here that the colefficient of x^{2} is zero; it should be included. in the computation with that value.

Exercises

i. Evaluate (2) at $x_{0}=1, x_{0}=-1, x_{0}=10$. Check your answers. :
2. Evaluate (8) at $x_{0}=0, x_{0}=1, x_{0}=2$. What can you say s about the behavior of $p(x)$ in the intervals $-1 \leq x \leq 0$ and $1 \leq x \leq 27$
3. Differentiate the polynomial (8) and evaluate the resulting. cubic polynomial at $x_{0}=-1$ and $x_{0}=2$.

3. IMPLEMENTATION OF HORNER'S SCHEME

How can we program (6) for a general polynomial (1)? Assume that, the coefficients $a_{0}, a_{1}, \ldots a_{n}$ are stored in an array of length $n+1$ '. If we are in column k of Table (6) and the number in row 3 of that column is stored in p , then. the numbers'in rows 2 and 3 of column k-1 will be $p x_{0}$ and $p x_{0}+a_{k-1}^{-}$, respectively. (In the leftmost column the corresponding numbers are, of course, 0 and ${ }_{a}{ }_{n}$.) Thus we can write the overall process in the form of a simple loop:
$1 . .$. Input $\left\{a_{0}, a_{1}, \ldots, a_{n}, x_{0}\right\}$.
2. $\quad \mathrm{p}:=a_{n}^{\prime} \quad$.
(10) 3. For $k=n-1, n-2, \ldots, 0$ do

$$
3.1 \mathrm{p}:=\mathrm{px} \mathrm{o}_{0}+\mathrm{a}_{\mathrm{k}}
$$

4. . Output $\left\{x_{0}^{*}, p\right\}$.
'. Each execution of step ? involves one multiplication and one addition, that is, altogether there are n multiplications and additions each requiring $n(\mu+\alpha)$ seconds.
$>$

This represents a considerable saving, over the $(2 n-\dot{1}) \mu+n \alpha$.seconds needed for (4).

Exercises

4. Draw a flow chart for the algorithm (10).
5. If a programmable calculator or computer'is available, implement (10) for cubic'and quartic polynomials. 'Test your, program' with the polynomials (3), and (8) and the values of x used in Exercises 1 and 2 of Section 2.
6. Do a hand calculation or run your program on another polynomial such as $p(x)=x^{3}+x^{2}+x+1$ at $x_{0}=6$, $x_{0}=-1, x_{0}=10$.

4. CONVERSION TO DECIMAL REPRESENTATİON

As an application of the Horne scheme, consider the question of finding the decimal representation of some integer $N=\left(a_{n} a_{n-1} \ldots a_{0}\right)_{b}$ given in base b notation. For example, let $b=2$ and N the binary number

$$
\begin{equation*}
\stackrel{N}{N}=110011 . \tag{11}
\end{equation*}
$$

Generally, the notation $N=\left(a_{n} a_{n-1} \ldots a_{0}\right)_{b}$ means that

$$
N^{\prime}=a_{n} b^{n}+a_{n-1} b^{n-1}+\cdot \cdots+a_{1} b+a_{0}:
$$

In other, words, if we introduce the polynomial (1), then we have $\mathrm{N}^{\prime}=\dot{p}(\mathrm{~b})$. Thus, in the case of (11); we need to evaluate the polynomial

$$
p(x)=x^{5}+x^{4}+x^{5}+1
$$

at $x_{0}=2$. The \cdot Horne scheme for this has the form

$$
x_{0}=2^{\circ}
$$

$1 \cdot$	1	0	0	1	\cdots
0	2	6	12	24	50
1	3	6	12	25	51

and hence our binary number 110011. has the decimal reprosentertion 51.

Exercises

7. Convert the binary integers 10101; 1111, 10000 to decimal representations.
8. Convert the integers (74013) $8, \cdot(112101)_{3},(4481)_{5}$ fo decimal representations.

5. HORNER ${ }^{\text {P }}$ S SCHEME AND. POLYNOMIAL DIVISION

We return to our algorithm (10), but this tame we retain the successive values of the variable p in steps 2 and 3.1 , that is, the entries in row 3 of Table (6). We, rewrite the algorithm as follows:

$$
\begin{aligned}
& \text { 1: Input }\left\{a_{0}, \therefore, a_{n}, x_{0}\right\} \\
& \text { 2. } p:=a_{n} \\
& \text { 3. For } k=n-1, n-2, \ldots, 0 \text { do } \\
& -3.1 \mathrm{q}_{\mathrm{k}}:=\mathrm{p} \\
& \therefore 3: 2 \mathrm{p}:=\mathrm{px}+\mathrm{a}_{\mathrm{k}} \\
& \text { 4. Output }\left\{x_{0}, p, q_{0}, \ldots,, q_{n-1}\right\}
\end{aligned}
$$

Hence between the coefficients ar ${ }_{0}, \ldots, a_{n}, q_{0}, \ldots, q_{n-1}$, and p we have the relations:
(13)

$$
\begin{aligned}
q_{n-1} & =a_{n} \\
q_{n-2} & =q_{n-1} x_{0}+a_{n-1} \\
\cdot q_{n-3} & =q_{n-2} x_{0}+a_{n-2} \\
& \cdot \\
& \cdot \\
q_{1} & =q_{2} x_{0}+a_{2} \cdot \\
q_{1} & =q_{1} \dot{x_{0}}+a_{1} \\
p & =q_{0} x_{0}+a_{0} .
\end{aligned}
$$

Evidently in Table (6) q_{2}, q_{1}, q_{0}, p are the numbers in row 3.

1. We now introduce the new polynomial
(14) $\quad, q(x)=q_{n-1} x^{n-1}+\ldots \therefore+q_{1} x+q_{0}:$

It is related to $\dot{p}(x)$ 部ia a simple formula. In fact, using the formulas (15) we find that

$$
\begin{aligned}
& q(x)\left(x-x_{0}\right)+p=q_{n-1} x^{n} \cdot q_{n-2} x^{n-1}+\ldots q_{1} x^{2}+q_{0} x+p \\
& -q_{n-1} x_{0}+x^{n-1} \cdots q_{2} x_{0} x^{2}-q_{1} x_{0} x_{0}-q_{0} x_{0} \\
& =q_{n-1} x^{n}+\left(q_{n-2}-q_{n-1} x_{0}\right) x^{n-1}+\ldots \\
& +\left(q_{1}-q_{2} x_{j}\right) x_{0}^{2}+\left(q_{0}-q_{1} x_{0}\right) \dot{x}+\left(p-q_{0} x_{0}^{\prime}\right) \\
& =a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{o} .
\end{aligned}
$$

and hence because of $p \not p\left(x_{0}\right)$ that

$$
\begin{equation*}
p_{1}(x)=q(x)\left(x-x_{0}\right)+p\left(x_{0}\right) \tag{15}
\end{equation*}
$$

Thus, $q(x)$ is the result of the division of the - polynomial $p\left(x^{\prime}\right)$ by the linear factor $x=x_{0}$ and $p\left(x_{0}\right)$ is the remainder. Honer's scheme is indeed only a slightly condensed form of the standard division of a polynomial by a linear factor. To illustrate this we write this process in its familiar fợm for the cubic polynomial (5) (recall $q_{2}=a_{3}$):

$$
\begin{aligned}
& \frac{q_{2} x^{2}+q_{1} x+q_{0}}{x-x_{0}} \sqrt{a_{3} x^{3}+a_{2} x^{2}+a_{1} x-a_{0}} \\
& \begin{array}{r}
\frac{q_{2} x^{3}-q_{2} x_{0} x^{2}}{a q_{1} x^{2}+a_{1} x} \\
\cdot \frac{q_{1} x^{2}=q_{1} x_{0} x}{q_{0} x+a_{0}}
\end{array} \\
& \therefore \frac{q_{0} x^{2}-q_{0} x_{0}}{p^{2}}
\end{aligned}
$$

which means that
$=\quad \quad_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=\left(x-x_{0}\right)\left(q_{2} x^{2}+q_{1} x+q_{0}\right)+p$
in agreement with (15).
More generally, this long division may be applied to divide any polynomial by a nonzero polynomial of lower degree. For instance, the division of (8) by $u(x)={ }^{\circ} x^{2}-x+2$ proceeds as follows:

$$
\begin{gather*}
x^{2}-x+2 \stackrel{x^{2}-x-3}{x^{4}-2 x^{3}+0 \cdot x^{2}+x-1} \\
 \tag{17}\\
\frac{x^{4}-x^{3}+2 x^{2}}{-x^{3}-2 x^{2}+x}
\end{gather*}
$$

$$
\begin{array}{r}
\frac{-x^{3}+x^{2}-2 x}{-3 x^{2}+3 x-1} \\
-\frac{-3 x^{2}+3 x-6}{5}
\end{array}
$$

which means that .

$$
x^{4}-2 x^{3}+x-1=\left(x^{2}-x+2\right)_{0}(x-x-3)+5 \cdot
$$

- For the general polynomial (1) and any

$$
\begin{equation*}
y(x) \equiv u_{m} x^{m}+u_{m-1} x^{m-1}+\ldots+u_{1} x+u_{y}, m \leq n, u_{m} \neq 0_{0} \tag{18}
\end{equation*}
$$

this' division algorithm" may be written in' the following, form:

2. , For $j=0,1, \cdots, \ldots$, n $^{\text {do }} r_{j}:=a_{j}$
3. For $k=-m^{\prime}, n-m-1, \ldots ; 0$ do

$$
\begin{equation*}
3.1 . q_{k}:=r_{m+k} / u_{m} \tag{19}
\end{equation*}
$$

$$
3: 2: 1 \quad r_{j}:=r_{j}-q_{k} u_{j-k}
$$

$$
A^{4} \therefore \text { Output }\left\{q_{0}, \text {, N }, q_{n-m}^{\prime} r^{A},\right.
$$

For the resulting polynomial, s
$(\underline{20}) q(x)=q_{n-m} x^{n-m_{+}} \ldots+q_{1} x+q_{0}, r(x)=r_{m-1} x^{m-i}$

12
i, we then have

$$
\begin{equation*}
p(x)=q(x) u(x)+r(x) \tag{21}
\end{equation*}
$$

- In the special case of $u(c)=x-x_{0}$ that is, $m=1, u_{1}=1$, $u_{0}=-x_{0}$, the algorithm reduces essentially to (12). The only difference is that the remainder is now a polynomial. which we initialize in step 2 as $r(x)=p(x)$. Formerly we knew that the remainder is a constant which may be initialized as p i a_{n}.
\because - The algorithm (19) is"probably easiest to understand by going in detail through the followingenand division process:

$$
u_{2} x^{2}+u_{1} x+u_{0} \quad \frac{\dot{q}_{2} x^{2}+q_{1} x+q_{0}}{r_{4} x^{4}+r_{3} x^{3}+\dot{r}_{2} x^{2}+r_{1} x+r_{0}}
$$

$$
\left.\begin{array}{l}
r_{4}=q_{2} u_{2}, \\
r_{3}=r_{3}-q_{2} u_{1}, r_{2}=r_{2}-q_{2} u_{0}
\end{array}\right\}
$$

$$
\frac{q_{2} u_{2}^{*} x^{4}+q_{2} u_{1} x^{3}+q_{2} u_{0} x^{2}}{r_{03} x^{3}+r_{2} x^{2}+r_{1} x}
$$

$\left.\begin{array}{l}r_{3}=q_{1} u_{1} . \\ r_{2}=r_{2}-q_{1} u_{1}, r_{1}=r_{1}-q_{1} u_{0}\end{array}\right\}$

$$
\frac{q_{1} u_{2} x^{3}+q_{1} u_{1} x^{2}+q_{1} u_{0} x}{r_{2} x^{2}+r_{1} x+r_{0}}
$$

$\left.\begin{array}{l}r_{2}=q_{0} u_{2} \\ r_{2}=r_{1}-q_{0} u_{2}, r_{0}=r_{0}-q_{0} u_{0}\end{array}\right\}$
$\frac{q_{0} u_{2} x^{2}+q_{0} u_{1} x+q_{0} u_{0}}{r_{1} x+r_{0} \quad \text { remainder }}$

Exercises

9. Perform the division (16) for the polynomial (2) and $x_{0}=2$. x Compare your results with those of (7).
10. As in (i7) divide $p(x)=x^{6}+x^{3}-x^{4}+2 x^{3}-x+2$ by $u(x)=2 x^{3}+2 x^{2}-x+3$. Then follow the same steps in Algorithm (19).
II. If a programmable calculator or computer is available, implement
(19) for reasonable values of $n>m>0$. Test your program with. the polynomials of. (17) and Exercise 2 abóve.

13

12e (Optional) Şhow that there is only one pair of polynomials $q(x)$, $r(x)$ with degree $r(x)<$ degree $u(x)$ that satisfies (21).

6. HORNER'S SCHEME AND THE DERIVATIVES

We return to the basic formula (15). Since $\dot{q}(x)$ turns out to be the difference quotient

$$
q(x)=\frac{p(x)-p\left(x_{0}\right)}{x-x_{0}}
$$

'we expect that $q\left(x_{0}\right)$ is the valt of the derivative of p at x_{0}. In fact, by applying the produçt rule to (15), we obtain

$$
\begin{equation*}
p_{v}^{\prime}(x)=q^{\prime}(x)\left(x-x_{0}\right)+q(x), \tag{22}
\end{equation*}
$$

whence indeed

$$
\begin{equation*}
p^{\prime}\left(x_{0}\right)=q\left(x_{0}\right) . \tag{23}
\end{equation*}
$$

Thus $p^{\prime}\left(x_{0}\right)$ may be evaluated by applying Horner's scheme to q. For our example (2) and $=2$ this looks as follows:

To implement this, note that eack column of (24) can be computed from the column on its left. Thus, we don't have to complete the evaluation of $p(2)$,. i.e., fill in all of row 3 , before finding the valuer of $p^{\prime}(2)$. However, observe also that in the last columnonly p itself is evaluated. Thus we may extend (10). as follows:

```
1. Input \(\left\{a_{0}, \ldots, a_{n} * x_{0}\right\}\)
2. \(p:=a_{n}\)
3. \(p^{\prime}:=p\)
4. For \(k=n-1, n-2, \ldots, 1\) do
\(4.1 \mathrm{p}^{i}:=\mathrm{px}_{0}+\mathrm{a}_{\mathrm{k}}\)
\(4.2 \mathrm{p}^{\prime}:=\mathrm{p}^{\prime} \mathrm{x}_{0}+\mathrm{p}\).
5. \(p,:=p \dot{x}_{0}+a_{0}\)
6. Output \(\left\{x_{0}, p, p^{\prime}\right\} . \therefore\).
```

The process may be extended to higher derivatives. For this note that the repeated application of the Horner scheme results in'a sequence of divisions:

$$
\begin{align*}
p(x) & =q_{1}(x)\left(x-x_{0}\right)+p\left(x_{0}\right) \\
q_{1}(x) & =q_{2}(x)\left(x-x_{0}\right)+q_{1}\left(x_{0}\right) \\
q_{2}(x) & =q_{3}(x)\left(x-x_{0}\right)+q_{2}\left(x_{0}\right) \tag{26a}\\
& \vdots \\
q_{k}(x) & =q_{k+1}(x)\left(x-x_{0}\right)+q_{k}\left(x_{0}\right)
\end{align*}
$$

where $q_{1}(x)$ denotes our original $q(x)$. At each step the degree of the $q^{\prime} s$ decreases exactly by one; that is, the degree of $q_{1}(x)$ is $n-1$; for $q_{2}(x)$ it is $n-2$, and generally $q_{k}(x)$ has degree $n-k$. Thus. $q_{n}(x)$ is a constant and we have $q_{n+1}(x) \equiv 0$, and our sequence of equations (2,6) ends with

$$
\begin{align*}
q_{n-1}(x) & =q_{n}(x)\left(x-x_{0}\right)+q_{n-1}\left(x_{0}\right) \tag{26b}\\
q_{n}(x) & ={ }_{\circ} q_{n}\left(x_{0}\right)
\end{align*}
$$

We multiply the $k^{\text {th }}$ equation by $\left(x-x_{0}\right)^{k}, \hat{k}^{\prime}=0,1, \ldots, n$, and add all of them together. Then for $k=.1, \ldots, n$, the $\operatorname{term} q_{k}(x)\left(x-x_{0}\right)^{k}$ arising on the left of the $k^{\text {th }}$ equation cancels against the same term on the right in the (k-1)st equation. Hence we obtain

$$
\begin{equation*}
\left.p(x)=Y_{p\left(x_{0}\right)+q_{1}\left(x_{0}\right)\left(x-x_{0}\right)+q_{2}\left(x_{0}\right)\left(x-x_{0}\right)}\right)_{+} \tag{27}
\end{equation*}
$$

$$
q_{n}\left(x_{0}\right)\left(x-x_{0}\right)^{n}
$$

By differentiating this k times, $0 \leq k^{*} \leq \dot{n}$; the first $(k-1)^{\text {st }}$ terms disappear, the $k^{\text {th }}$ term becomes $k!q_{k}\left(x_{0}\right)$, and all subsequent terms still have a nonzero power of $\left(x-x_{0}\right)$ as a factor. Thus for $x=x_{0}$ these terms become zero and we find that

Moreover, (27) becomes

$$
\begin{align*}
& \mathrm{p}(\mathrm{x})=\mathrm{p}\left(\mathrm{x}_{0}\right)+\mathrm{p}^{\prime}\left(\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{0}\right)+\frac{1}{2!} \mathrm{p}^{\prime \prime}\left(\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{0}\right)^{2}+\ldots \tag{29}\\
& \quad \cdot \frac{1}{\mathrm{n}!} \mathrm{p}^{(\mathrm{n})}\left(x_{0}\right)\left(x-x_{0}\right)^{n}
\end{align*}
$$

This is the Taylor expansion of $p(x)$ at $x=x_{0}$.
The sequence of divisions ($26 \mathrm{a} / \mathrm{b}$) is, of course, computed by means of repeated application of the Honer scheme. For example, in the case of the quartic poly-. nominal (8) we obtain for $x_{0}=-1$ the following results:

and thus

$$
\begin{array}{ccccc}
& \cdots & \vdots & \vdots & \\
& 13 & & 1 . & 12 \\
& \vdots & & & \vdots
\end{array}
$$

$$
\begin{equation*}
p(x)=1-9(x+1)+12(x+1)^{2} \cdot \ddot{6}^{(x+1)^{3}+(x+1)^{4} .} \tag{31}
\end{equation*}
$$

Besides providing us with a, simple method for the evaluation of the derivatives of $p(x)$ at a given point $x^{\prime}=x_{0}$, we thave obtained here also an algorithm for rewriting $\vec{p}(x)$ in terms of the powers of $\left(x-x_{0}\right)$ instead of those of x..
${ }^{6}$. In extension of the algorithm (25) the entire process car be written as follows:

1. Input $\left\{a_{0}, \ldots ; a_{n}, x_{0}\right\}$
2. For $k=f^{0}, 1, \ldots, n$ do $p_{k}:=a_{n}$
3. For $k=n-1, n-2, \ldots, 0$ do.
. $3.1 \quad p_{0}:=p_{0} x_{0}+a_{k}$
3.2 For $\mathrm{j}=1,, \because ., \mathrm{k}$ do
3.2.1 $p_{j}:=p_{j} x_{0} \pm p_{j-1}$.
$\therefore \quad \because \quad$ Output $\left\{x_{0}, p_{0}, \ldots, p_{n}\right\}_{i}-$
The resulting values are

$$
p_{4_{6}}=\frac{1}{k!} \cdot \dot{p}^{(k)}\left(x_{0}\right), \quad{ }^{k}=0,1, \ldots, n,
$$

and hence are exactly the coefficients of the "shifted" polyñomial (31).

Ás (25) the algorithm (32) computes the data columnwise from left to, right. The computational process is". eassily followed in the next table..

Exercises

13. Verify by direct differentiation andevaluation of the resulting polynomials, the results given in (24), (30), and (31).
14. Follow in detail, the algorithm (32) on the example (30).
15. If a programmable calculator or computer is available, implement (32) for reasonable values of n. Test your program with the; data in the example (24) and (30).
16. Write out in detail the proof of (27), and (28).
17. Compute the coefficients of $p(x-1)$ for

$$
p(x)=x^{6}-6 x^{5}+15 x^{4}-10 x^{3}-15 x^{2}+4 x-9
$$

The basic method named in the title of this unit was given by W. G. Horne in the early nineteenth century in connection with an. efficient method for finding the coefficients of $p\left(x-x_{0}\right)$, [Philosophical Transactions, Royal Society of London 109, 1419 , 308-335]. But the factorization

$$
p(x)=\left(\ldots\left(\left(a_{n} x_{0}+a_{n-1}\right) x_{0}+a_{n-1}\right) x_{0}+\ldots\right)
$$

on which it is based was already u'èdsy Isaac Newton some hundred years earlier [Analysis per Quantitatem Series, London, 1711].

We saw earlier that Hornar 's method uses fewer operations than, for instance, the approach indicated in (4): It' can be shown that when, the inputs to our algorithm (10) are arbitrary constants, that is, when we are not using a ny further information about them, then there is no other algorithm which computes p with less than n multiplications and n additions.

- In practice the computations in all our algorithms are performed in floating point arithmetic on some computer. Then round-off errors are introduced and the question arises how they affect the results. For instance, it turns out that with, increasing $\left|x_{0}^{*}\right|$, (absolute value of x_{0}), the result of the Honer algorithm (10) may be increasingly inaccurate. The situation' is more complex when it comes to the other algorithms given heres

8. ANSWERS TO EXERCISES

1.

2. $\dot{x}_{0}={ }^{\prime \prime} 0$

$x_{0}=1$

$$
p(1)=-1
$$

$$
\begin{aligned}
& \begin{array}{l}
x_{0}=2 \\
0
\end{array} \\
& j \text {. } \\
& p(2)=1
\end{aligned}
$$

3. $p^{\prime}(x)=4 x^{3}-6 x^{2}+1$

84

4.

5. For quartic polynomials: $10 \mathrm{DIM} \mathrm{A}(5)$

20 MAT INPUT A
30 INPUT X
40 LET $P=A(5)$
50 FOR $K=4$ TO 1 STEP - 1 .
60 LET $P=P \% X+A(K)$
70 NEXT K
80 PRINT XP
90 END
6.
$\xrightarrow{x_{0}=1}$

$x_{0}=-1$
0

$$
p(-i)
$$

$x_{0}=10$

1	1	1	i
0	10	110	1110
1	11	111	1111

$$
p(10)=1,111
$$

7. $x_{0}=2$

1	0	1	0	1
0	2	4	10	, 20
1	-2	5	10	21

- $x_{0}=2$

$$
(10000)_{102}=(16)_{10} \because:
$$

8. $x_{0}=8$

(74013) ${ }_{8}=(3071)_{10}$

- . $<$.

11. For $n \div 4, m=2$:

12. Suppose there were more than one pair.

That is suppose $\rho(x)=q(x) u(x)+r(x)$ where either $r(x)=0$ or deg $r(x)<\operatorname{deg} u(x)$
$p(x)=q^{*}(x) u(x)+r^{*}(x)$ where either $r *(x)=0$
or $\operatorname{deg} r^{*}(x)<\operatorname{deg} u(x)$.

```
\(\Rightarrow\left(q(x)-q^{*}(x)\right) u(x)=r(x)-r^{*}(x)\)
    \(\Rightarrow u(x)\) divides \(r(x)=r *(x)\) and thus deg \(u(x) \leq \operatorname{deg}\left[r(x) .-r^{*}(x)\right]\)
                                or \([r(x)-r:(x)]=0\).
```

But $0 \leq \operatorname{deg}\left[r(x)-r^{*}(x)\right]<\operatorname{deg} u(x)$ so we must have $r(x)-r^{\prime}(x)=$ or $r(x)=r *(x){ }^{*}$
$\Rightarrow q(x) u(x) ; q^{*}(x) u(x)$
And hence, $q(x)=q^{*}(x)$.
Therefore there was really only one pair, i.e., the $q(x)$ and $r(x)$ are unique.

umap

ALGORITHAS FOR FINDING ZEROS OF FUNCTIONS
by. Werner C. Rheinboldt

U
in
γ
COMPUTER SCIENCE
edc/umap ;'55chapel st./ewton.mass 02160

Title: ALGORITHMS FOR FINDING ZEROS OF FUNCTIONS
Author: Werner C. Rheinboldt
Department of Mathematics and Statistics
University of Pittsburg
Pittsburg, PN 15260
Review Stage/Date: $111 ; 12 / 15 / 78$
Classification: COMP SCl
Suggested Support Materials:
References: See Section 7 of text.
Prerequisite Skills:

1. Be familiar with the Mean Value Theorem.
2. Bed familiar with the Intermediate Value Tbeorem.
3. Be able to differentiate elementary functions.
4. Be familiar with making estimates using absolute value notation.

Output Skills:

1. Understanding of standard bisection, secant, and Newton methods of root finding and appreciation of their limitations and strong. points. Introduction to more recent root finding methods.

Other tRel Iated dunits:
$\begin{array}{cc}\text { Horner's Scheme and Related Algorithms (Unit 263) } \\ =1 . & \therefore \quad .\end{array}$
mODULES AND MONOGRAPHS IN UNDERGRADUATE mathematics and its applications project (umap)

The goal of UMAP is to develop, through a community of users and developers, a system of instructional modules in undergraduate mathematics and its applications which may be used to supplement existing courses and from which complete courses may eventually be built.

The Project is guided by a National Steering Comittee* of mathematicians, scientists and educators. UMAP is funded by a grant from the National Science Foundation to Education Development Center, Inc., a publicly supported, nomprofit corporation engaged in educational research in the U,S. and abroad. .

PROSECT STAFFF

Ross L. Finney
Solomon Garfunkel
Felicia.a DeMay Weitzel
Barbara Kelczewski
Edwina R. Michener
Dianne Lally

- Paula M. Santillo

Carol Forray
Zachary Zevitas
national steering committee

$$
\begin{aligned}
& \text { W.T. Martin } \\
& \text { Steven J. Brams } \\
& \text { Llayron Clarkson }
\end{aligned}
$$

- Ernest J. Henley

Donald A. Larson
William F. Lucas
R. Duncan Lüce

George Miller
${ }^{1}$ Frederick Mosteller
Walter E. Sears
George Springer
Arnold A. Strassenburg
Alfred B. Willcox

Director
Associate Director/Consortium Coordinator
Associate ${ }^{\text {Director for Administration }}$ Coordinator for Materials Production
Editorial Consultant
Project Secretary
Financial Assistant/Secretary
Technical Typist/Production Assistant Order Processor

"

 par their reviews, and all others who assisted in the production of this unit.This materiat was prepared with the support of National Science Foundation Grant.No. SED76-19615 A02. Recommendations expresšed are those of the author and do not necessarily reflect ${ }^{\circ}$ the views of the NSF, nor of the National Steering Committee.

29

ALGORITHMS FOR FINDING ZEROS OF FUNCTIONS by
Werner C. Rheinboldt
Department of Mathematiçs and Statistics
University of Pittsburgh Pittsburgh, PN 15260

1

1. SOME MODEL PROBLEMS

9
Let f be some real function of a real variable x. We want to find a real solution (zero, root) x^{*}. of the equation
$f(x)=0$.
Only in a few cases, such as for linear or quadratic functions f, are there any explicit formulas for such a solution. Hence we will have to be satisfied with computing x^{*} approximately.

Nonlinear equations arise frequently in applications. For later $\mu \mathrm{se}$ we, give here a few simple examples.

Van der Waal's equation of state for an imperfect \therefore gas has the form

$$
\begin{equation*}
\left(p+\frac{a}{v^{2}}\right)(v-b)=R T \tag{2}
\end{equation*}
$$

Here p [atm] is the pressure, $v[$ liters/mole] the molal volume (volume/mass), $T\left[{ }^{\circ} K\right]$ the absolute temperature, $R=0.082054$ [Iiter atm/mole ${ }^{0} K$] .the gas coñtant, añd a [liter. ${ }^{2}$ atm/mole $\left.{ }^{2}\right]$, b [liter/mole] constants dependent on the particular gas. For instance, for carbon dioxide we have $a=3: 592, b=0.04267$ and for helium
$a=0.03412, \vec{b}=0.02370$.
For given values of p, T, a, b we want to compute the corresponding value (s) of v for which Equation (2) holds. This is a problem of the form of Equation (1). More specifically, after multiplying by v^{2}, the desired values are the solutionsere cubic polynomial in v

$$
p v^{3}-(p b+R T) v^{2}+a v-a b=0
$$

As anothér example consider the motion of a particle of mass m which is attracted to a fixed center 0 by a Newtonian force $\mu \mathrm{m} / \mathrm{r}^{2}$ with constant $\mu>0$.
Kepler's first law then states that the particle moves or a conic section with eccentricity e with one focus at 0 . . Thus for $0<e<1$ the orbit is an ellipse, for $\mathrm{e}=1$ a parabola, and for $\mathrm{e}>1$ a branch of a hyperbola.

Figure 1.

More specifiçally, let p^{-}be the pericenter, that is the point on the orbit closest to 0 , and introduce the polar coordinates (r, ϕ) with center at 0 and the direction of $\overline{O P}$ 'as the x-axis. Then for $e \gg 0, \dot{e} \neq 1$ the orbit is given by

$$
\begin{equation*}
r=\frac{a\left|1-e^{2}\right|}{1+e \cos \phi} \tag{4}
\end{equation*}
$$

Now let T be the time when the particle is at the pericenter, then its.position at time t is determined - by the Kepler equations
(a) $n(t-T)=u-e \sin u$, if $0<e<1$

The variable u is called the eccentric anomaly; it relates to r by the equations
(6). $r=a(1-e \cos u)$, if $0<e<1$
-(6) $\quad r=a(e \cosh u-1)$, if $e \geqslant 1$.
The parameter n is the mean motion, that is, in the case of an ellipse $n=2 \pi / p$ where p is the period. For given a, e, n, T the problem of determining the position of the particle at time t now requires the solution u of the corresponding Equation (5). Then r can be found from Equations (6) and from Equation (4).

Some values of the parameters for the case of the earth's orbit around the sun are $a=1.000, e=.017$, $\mathrm{n}=.01720$, and $\mathrm{T}=\operatorname{Jan}^{\circ} 1$, 1900. In thris elliptic case Equation (5) (a) is unchanged if we add or subtract a multiple of 2π from $\ell=n(t-T)$ and u. Hence we may always reduce the left side such that $-\pi<\ell \leq \pi$.

Exercises

1. Let the function g be continuous on the closed interval $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ and differentiable on $\mathrm{a}<\mathrm{x}$. b . Then the Mean Value Theorem ensures the existence of at least one value x^{*} such that ${ }^{*}$

$$
g(b)-g(a)=(b-a) g^{\prime}\left(x^{\pi}\right), \quad a<x^{-\pi}<b:
$$

Thus to find x^{*} we need to solve some nonlinear equation of the form of Equation (1). Write down this equation in the following cases:

$$
\begin{aligned}
& \text { (a) } g(x)=(x+1) e^{-x}, a=-1, b=0 \\
& \text { (b) } g(x)=x^{20}, a=0, b=20^{1 / 19}=1.1708
\end{aligned}
$$

2. For a continuous function y on the interval $a \leq x \leq b$ there - exists at least one value x^{*} such that

$$
\int_{a}^{b} g(x) d x=(b-a) g\left(x^{*}\right), . a,<x^{*}<b .
$$

This is the integral mean value theorem. Write down the resulting equation for x in the cases
(a)

$$
\int_{2}^{3} \frac{d x}{x \log x}
$$

(b) $\quad \int_{0}^{1}\left(x+e^{x}\right) d x$.
2. EXISTENCE QUESTIONS

Before we look at methods for solving a given Equation (1), $\boldsymbol{d}_{\text {it }}$ is important to realize that there* may be no solution at all or there may exist any number of

- them. The examples in Table 1 illustrate some of the possibilities.

TABLE 1

$f(x)$	No. of zeros	Zeros
$\left\{\begin{array}{c} e^{x} \ldots \\ \frac{1}{2} x-1 \\ x^{2}-1 \\ \tan x \\ (x+1)^{2}-\text { for } x \leq-1 \\ 0 \text { for }-1 \leq x \leq 1 \\ (x-1)^{2} \text { for } x \geq 1 \end{array}\right.$	none one two countably many a continuum	$\begin{gathered} x^{*}=2 \\ x_{1}^{*}=1, x_{2}^{*}=-1 \\ x_{k}^{*}=k \pi, k=0, \pm 1, \pm 2, \ldots \\ \text { any } x^{*} \text { with }-1 \leq x^{*} \leq+1 \end{gathered}$

This indicater that it is advisable to begin an investigation of a particular equation by localizing a
suitable interval $a \leq x \leq b$ n which the desired sölution exists. A simple approach for the construction of such an - interval is to plot the graph of $f(x)$. For instance in the case of the simple Kepler equation

$$
\begin{equation*}
f(x)=x-1-\frac{1}{2} \sin x=0 \tag{7}
\end{equation*}
$$

this may provide the results shown in Table 2 and• Figure 2.
TABLE 2 $\quad i \quad ;$

Figure 2.

The drawing indicates that a zero of f should be contaned in the interval $1 \leq x \leq 1.5$.

The theoretzcal foundation for this conclusion is the following basic theorem:

Intermediate Value Theorem:. Let f be a continuous function on the interval $a \leq x \leq b, a \leq b$. If

$$
\begin{equation*}
\operatorname{sign} f(a) \neq \operatorname{sign} f(b) \tag{8}
\end{equation*}
$$

then $f(x)=0$ has a solution in the interval $a \leq x . \leq b$.
The proof of this theorem is not entirely simple and use's some fundamental properties of the real number system. But intuitively the result is clear. A continuous function might be characterized as a function with a graph that can be drawn without lifting the pen froty the paper. The condition (8) implies that at two endpoinfs of the interval the function values are on opposite, sides of the x-axis; hence when drawing the graph of f we need to cross the x-axis somewhere in that interval. *

the interval $0 \leq x$ Ese Figure

Ferctses:

1-: determine the solutions of the function
 about the number of solution sine veteran
 oropts. For instance in the jotrval ox x equation

has for $a=-1 / 2$ singe root x^{*} atc
 exactly three roots.

The case $a=0$ is exceptional.: Generally, a -root x of the Equation (1.) is called a root of multiplicity for x near x^{*}. the function f can be written in the form - (10)

$$
f(x)=\left(x-x^{*}\right)^{m} g(x)
$$

with some function g that is continuous near x * and satisfies $g\left(x^{*}\right) \neq 0$. In our case, Equation (9) has for $a=0$ the form $f(x)=x^{2}\left(x \cdot \cdot \frac{1}{2}\right)$ which shows that $x^{*}=0$ is a root of multiplicity two while $x^{*}=\frac{1}{2}$ has multiplicity one. Thus counting multiplicities we really have three roots. Generally, the following result holds:

Theorem: Under the conditions of the intermediate value theorem, the interval $a \leq x \leq b$ contains either infinitely many solutions or finitely many solutions for which the sum of their multiplicities is an odd number \qquad
in the Interval $0 \leq, x \leq 1$,
 contains a root of the Kepler equation $\ell=u-e \sin u$.
-3 fhowithat for the so called critical values
$\because \because P_{c}=\frac{a}{27 b^{2},} T_{c}=\frac{8 a}{27 R b}$
Fe van der War Equation (3) has only one root $v_{c}=3 b$ of multiplicity
three.: Show that the constants a, b, R can be expressed in terms of "the critical values as

$$
\because a=3 p_{c} v_{c}^{2}, b=\frac{1}{3} v_{c}, R=\frac{8}{3} \frac{p_{c} v_{c}}{T_{c}}
$$

Use this to show that with the dimension-less variables $\hat{p}=p / p_{c}$, $\hat{v}=v / v_{c}, \hat{T}=T / T_{c}$ the equation assumes the form

$$
\left(\hat{p}+\frac{3}{\hat{v}^{2}}\right)(3 \hat{v} \cdot v)=8 \hat{T}
$$

3.

3. THE BISECTION METHOD

Suppose that an interval $a \leq x \leq b$ has been found where the conditions of the intermediate value theorem are satisfied. Then we know that there is at least one solution x^{*} of Equation (1) between a and b. For' the midpoint $m=a+(\bar{b}-a) / 2$ we test now the condition sign $f(m) \neq \operatorname{sign} f(a)$. If it holds then the intermediate vatu theorem guarantees that there is a root in the interval, $a \leq x \leq m$, otherwise, we have $\underset{\sim}{s} \cdot \mathrm{ign} f(\mathrm{~m})=\operatorname{sign} \mathrm{f}(\mathrm{a}) \neq \operatorname{sign} \mathrm{f}(\mathrm{b})$ and hence there must
be a root in $m \leq x \leq b$. In either case, the length
Table 3 of the interval has been halved. - By repeating the .prace we can decrease the interval-length below a prescribed tolerance and hence approximate a root. of f arbitrarily clpsely.

In an inforkal programming language this algorithm $\hat{*}$ may be written the following form.

1. Input $\{a, b, k \max , \mathrm{tol}\}$;
2. $\mathrm{k}_{4}:=0$;
3. If (sign $f(a)=\operatorname{sign} \dot{f}(b))$ then error return 1 :
"Wrong interval";
Print $\{k, a, b\}$;
4. If $|b-a| \leq$ tol then normal return;
5. $k:=k+1$;
6. $m:=a+(b-a) / 2$;
7. If (sign $f(a) \neq \operatorname{sign} f(m)$ then $b=m$ else $a=m$;
8. If k < k max then go to 4 else error return 2 "!kmax exceeded";

Step 2 has been included to verify that at all times the basic condition (8) is satisfied. If it holds for the - input interval then theoretically it will remain valid for all subsequent intervals. But in practice this may well not be the case due to round-off errors. All iterative methods should include a count k of the number of steps taken and use,it to stop the process when a given maximum count kmax has been exceeded. This is. done here in step 9.

Table 3 shows the results of the first five steps when the algorithm is applied to the Kepler Equation (7) on the interval $1 \leq x \leq 2$.

k	a	b	$b-a$	$f(a)$	$f(b)$
0	1	2	1	-0.4207	0.5454
1	1	1.5	0.5	-0.4207	$0.1223 \cdot 10^{-2}$
2	1.25	1.5	0.25	-0.2245	$0.1252 \cdot 10^{-2}$
3	1.375	1.5	0.125	-0.1154	$0.1252 \cdot 10^{-2}$
4	1.4375	1.5	0.0625	-0.05806	$0.1252 \cdot 10^{-2}$
5	1.46875	1.5	0.08125	-0.02865	$0.1252 \cdot 0^{-2}$

We shall see later that, with eight digit accuracy, the exact root is $x^{*}=1.4987011$. Qbviously, our algorithm is not particularly fast.

- The interval decreases at each step by a factor of two. Hence the kth interval has the length (b-a)/2k. If the tolerance is, say, 10^{-t} then we require that
or

$$
\begin{aligned}
& (b-a) 2^{-k} \leq\left(\begin{array}{l}
10^{-t} \\
2^{k} \geq(b-a)^{t} \\
10^{t}
\end{array}\right.
\end{aligned}
$$

that is
$\mathrm{k} \geq \log _{2}\left[(b-a) 10^{t}\right]$.
In the example of Table 3 this means that we need $\mathrm{k} \doteq 23$ to obtain seven digit accuracy.

Exercises

1. Draw a flow chart for the bisection algorithm.
2. If a programmable calculator or computer is available, implement the algorithm for the general Kepler Equations (5) with given' $-\pi<\ell=n(t-T) \leq \pi$ and $e>0$.
3. For the cubic polynomial $f(x)=x^{3}-2 x+2$ determine an interval containing (only) root and apply the bisection algorithm to approximate the root to four digit accuracy.
1

4. SOME LINEARIZATION METHODS

. In order to overcome the relatively slow convergence of the brsection method, we turn now to a different principle for computing solutions of Equation (1). It is based on the idea of replacing the function $f(x)$ by a succession of linear functions $g_{k}(x)=a_{k} x+b_{k}, k, 2, \ldots$, such that their zeros. $\cdot b_{k} / a_{k}, k=1,2, \ldots$, approximate the desired solution x^{*} of Equation (1).

A linear function is determined by its evalues at two distinct points. . Suppose that we art at the kth step of our process and that the approximations $x_{0}, x_{1}, \ldots, x_{k}$ of x^{*} have been computed already. If, $k \geq 1$ and $x_{k} \neq x_{k-1}$ then we may construct the 1 , inear function $g_{k}(x)$ which agrees with $\nsubseteq(x)$ at x_{k} and x_{k-1}, namely
(12) $\quad g_{k}(x)=f\left(x_{k}\right) \cdot+\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}\left(x-x_{k}\right)$.

For $f\left(x_{k}\right), f\left(x_{k-1}\right)$ the zero of this function, |that is
.If $f^{\prime}\left(x_{k}\right) \neq 0$ then the zero of Equation (14) is

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \tag{15}
\end{equation*}
$$

which becomes our next approximation of x^{*}. The resulting process is called Newton's method. It will fail whenever a zero derivative value is encountered, but otherwise it turns out to be even faster than the secant method.

As an example, we consider the computation of the positive square root of some positive number $a>0$. In other words, we wish to find the positive root of $f(x)=$ x^{2} - a. In that case, we have

$$
\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}=\frac{x_{k}^{2}-x_{k-1}^{2}}{x_{k}-x_{k-1}}=x_{k}+x_{k-1}
$$

and hence the secant method assumes the. form

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{1}{x_{k}+x_{k-1}}\left(x_{k}^{2}-a\right)=\frac{x_{k} x_{k-1}+a}{x_{k}+x_{k-1}} . \tag{16}
\end{equation*}
$$

- On the other hand, Newton's method becomes

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{x_{k}^{2}-a}{2 x_{k}}=\frac{1}{2}\left(x_{k}+\frac{a}{x_{k}}\right) \tag{17}
\end{equation*}
$$

For ${ }^{\prime}=10$ we start (16) with $x_{0}=11, x_{1}=10$ and (17) with $x_{1}=10$. The resulting first.few steps are 'given in Table 4.
\because A.linear. function is also defined by its function value and itcs slope at a given point. Hence', suppose that at $x_{k}^{-}, k \geq 0$, we are able to compufe not only $f\left(x_{k}\right)$ but

)

- also the value.of the derivative f ' $\left(x_{k}\right)$. Then we can replacd. the "secant line. (12) by the tangent rine

$$
\begin{equation*}
g_{k}(x)=f^{\prime}\left(x_{k}\right)+f^{\prime}\left(x_{k}^{9}\right)\left(x-x_{k}\right) \tag{14}
\end{equation*}
$$

Table 4
15. 'RATES OF CONVERGENCE

Exércises.
1, Apply the secant method to the Kepler Equation (7) starting with $x_{0}=2, x_{1}=1.5$.
2. Use Newton's method starting from $x_{0} x^{2}-1$ to solve the equation specified by problem $1(a)$ of Section 1.
3. If a programmable calculator or computer is available implement Newton's method for the computation of the square root of any positive number a. Use $x_{0}=a$ as starting point.
4. For polynomial equations the value of the function and its derivative at any given point may be computed. fitsimultaneously by means of Horner's Scheme.* Draw a flow chart of the resulting process. If a programmable calculator or computer is avallable implement the method for cubic and quartic polynomials and test it on several equations, such as the polynomial (3).
d^{\star} For explanation of Horner's Scheme, see UMAP $\# 263$.

The bisection method generates a sequence of intervals $a_{k} \leq x \leq b_{k}, k=0,1, \ldots$ which contain the desired roof x^{*}. Any point in the hth interval may bé considered as the kth approximation of x^{*}; for the moment let us consider the midpoint $m_{k}=a_{k}+\left(b_{k}-a_{k}\right) / 2$ for that purposes Since at each step the interval is halved we then have the obvious relation

$$
\begin{equation*}
\left|m_{k+1} \cdot x^{*}\right| \leq \frac{1}{2}\left|m_{k}-x^{*}\right|, k=0,1, \ldots . \tag{18}
\end{equation*}
$$

In other words, the errors converge to zero at least as fast as the geometric sequence $\left|m_{0}-x^{*}\right| / 2^{k}, k=0,1, \ldots$.

Now suppose that Newton's method is used and produces a sequence of points $x_{0}, x_{1}, x_{2}, \ldots$ which converge to the solution x^{*} of Equation (1). Moreover, assume that " the x_{k}-are all contained in some interval $a \leq x \leq b$ where

$$
\text { (i) }\left|f^{\prime}(x)\right| \geq \geq^{\prime} \alpha>0 ;\left\{\begin{array}{l}
\text { (ii) }\left|f^{\prime \prime}(x)\right| \leq B, \tag{19}\\
\text { for } a \leq x \leq b .
\end{array}\right.
$$

Then, it follows by Taylor's formula that -- with certain ξ_{k} in our interval .-

$$
\begin{aligned}
0=f\left(x^{*}\right)= & f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x^{*}-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(\xi_{k}\right)\left(x^{*}-x_{k}\right)^{2} \\
= & {\left[f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)\right] } \\
& +f^{\prime}\left(x_{k}\right)\left(x_{0}^{*}-x_{k+1}\right)+\frac{1}{.2} f^{\prime \prime}\left(\xi_{k}\right)\left(x^{*}-x_{k}\right)^{2}
\end{aligned}
$$

By the definition (15) of Newton's method the term in the square bracket is zero whence

$$
0=f^{\prime}\left(x_{k}\right)\left(x^{*} \cdot x_{k+1}\right)+\frac{1}{2} f^{\prime \prime}\left(\bar{\xi}_{k}\right)\left(x^{*}-x_{k}\right)^{2}
$$

or, because of condition (19),

In other words, in this case, the error $1 s$ squared at each step (up to some factor). Thus if, say, the $\mathrm{k}^{\text {th }}$ error is proportional to $10^{\text {ot }}$ then the $(k+1)$ st error is proportional to $10^{-2 t}$. fhis is clearly seen in the third column of Table 4 where for $k=3$ the number of correct. digits doubles with each step.

For the secant method a similar estimate can be derived. ${ }^{5}$ It turns out that if again Condition (19)
\mid holds and all x_{k} remain in $a \leq x \leq b$ ther we have .. with some constant $\gamma>0$.- in \cdot

$$
\begin{align*}
&\left|x^{*}-x_{k+1}\right| \leq r\left|x^{*}-x_{k}\right|^{t}, k=0,1, \cdots 9 \tag{21}\\
& \cdot t=\frac{1}{2}(1+\sqrt{5})=\cdot 1.6180 .
\end{align*}
$$

* Thus the errors tend to zero somewhat more slowly than in the case of Newton's method but certainly. faster th'an with the bisection method.

1
These results are somewhat deceptive. First of all, the condition (19) (i) is fairly strong since it implies. " that there is only one root in the interval $a \leq x \leq b$ and this root must have multiplice chey one. In fact, by the mean-value theorem we have

$$
\begin{gathered}
|f(x)|=\left|f(x)-f\left(x^{*}\right)\right|=\left|f^{\prime}(\xi)\left(x-x^{*}\right)\right| \geq a\left|x^{*}: x^{*}\right|, \\
a \leq x \leq b_{0}
\end{gathered}
$$

Hence $f(x)=0$ for any $a \leq x \leq b$ implies that $x=x^{*}$. Moreover, if f can be written in the form of Equation (10) with $g\left(x^{*}\right) \neq 0$ then the left \$ide of

$$
\left|x-x^{*}\right|^{m-1} \cdot|g(x)| \geq \alpha>0
$$

tends to zero, as x goes to x^{*} unless $m=1$.
For zeros of multiplicity greater than one, Newtion's method indeed converges much more slowly. For example, in the simple case

$$
\begin{equation*}
f(x)=(x-1)^{m}=0, \cdot x^{*}=1 \tag{22}
\end{equation*}
$$

ERIC.
witon's method has. the form

$$
x_{k+1} \stackrel{\circ}{=} x_{k}-\frac{\left(x_{k}-1\right)^{m}}{m\left(x_{k}-1\right)^{m-1}}=\frac{m-1}{m}\left(x_{k}+1\right)
$$

whence

$$
x_{k+1}-1=\frac{m-1}{m}\left(x_{k}-1\right)
$$

In other words, for $\cdot \mathrm{m}=2$ the convergence is here as slow as that of the bisection method, and for $m>2$ it is even slower. The secant method shows a similar behavior; in fact, not only the rate of convergence deteriorates but arbitrarily close to the root we may encounter $f\left(x_{k}\right)=f\left(x_{k-1}\right)$ in which case the method faifs completely.

There are further problems with the function (22). In fact', we see that $|f(x)| \leq \varepsilon$ implies that

$$
i^{\prime}-\varepsilon^{1 / m} \leq \dot{x} \leq 1+\varepsilon^{1 / m}
$$

Hence, say: for $m=10$ we have $|f(x)|-10^{-6}$ for $.75 \leq x$ < 1.25 . In other words, with six digit accuracy any point in this interval can be called a zero of f. Unless higher accuracy is used any iterative. process entering this uncertainty interval will, by necessity, show erratic behavior. A root of this kind is called ill-conditioned. It turns out that also roots of multipIicity one may be ill-conditioned.

Even if the conditions (19) hold the estimate (20) for Newton's method may be very misleading. Consider for example the equation

$$
\begin{equation*}
x^{19} \therefore-1=0 \tag{23}
\end{equation*}
$$

we encountered in Exercise $1(b)$ of Section 1. Hẹre clearly $f^{\prime}(x)>0$ for $x>\hat{0}$ and for any interval $0<a \leq x \leq b$ containing $x^{*} \leftrightharpoons 1$ the estimate (20) holds. But the factor $B / 2 \alpha$ will be very large unless a and b are very close to one. This reflects difficulties with Newton's method, and in fact for $x_{0}=1 / 2$ we have
$x_{1} \dot{=} 13,797.53$ which is certainly a much worse approximation of x^{*} than x_{0}. The subsequent iterates decrease monotonìcally, but very slowly, to one. Only very close to one the expected rapid conver整管ce sets in.

- Exercises

1. Show that when Newton's method is used for solving
$x^{2}-a=0, a>0$, starting from any $x_{0}>0$,
$x_{0} \neq \sqrt{a}$, the iterdtes satisfy

$$
x_{1}>x_{2}>\ldots>x_{k}>x_{k+1}>\sqrt{a}, k \geq 1
$$

and

$$
x_{k+1}-\sqrt{a}=\frac{1}{2 x_{k}}\left(x_{k}-\sqrt{a}\right)^{2} \cdot c
$$

2. Apply the secant method to the equation
$f(x)=x^{2}-a=\overline{0}, a>0$, starting from $x_{0}>x_{1}>\sqrt{a}$.
Show that

$$
x_{k+1}-\sqrt{a}=\frac{\left(x_{k}-\sqrt{a}\right)^{\prime}\left(x_{k-1}-\sqrt{a}\right)}{x_{k}+x_{k-1}}
$$

and

$$
x_{0}>x_{k-1}>x_{k}>x_{k+1}>\sqrt[2]{a}, k \geq 1 .
$$

3. Apply Newton's method to Equation (23)'starting from $x_{0}=1 / 2$. Show that

$$
x_{k+1}=\frac{18}{19} x_{k}+\frac{1}{19 x_{k}^{18}}=\frac{18}{19} x_{k} .
$$

How many iteration steps are needed to reach $\left|x_{k}-1\right| \leq 1.17$
\qquad
$\%$

The results of the previous sections show that none of the methods discussed here is entirely satisfactory. The bisection method is fairly reliable but slow, the Newton and secant method are both much more rapid in certain cases but show unreliable behavior in many others.

We discuss now an algorithm which combines the bisection and secant nethods to bring out their best features. Again we work with a sequence of intervals ${ }^{\circ} \mathrm{f}$ decreasing length for which the intermediate value theorem holds. If, say, $a \leq x \leq b$ is the kth interval, then we set

$$
\begin{aligned}
& x_{k}=a, y_{k}=b \text { if }|f(a)| \leq|f(b)| \\
& x_{k}=b, y_{k}=a \text { if }|f(a)|>|f(b)|
\end{aligned}
$$

Thus x_{k} may be considered the current best approximation of the root in the kth interval.

- A step of the algorithm now consists in determining . a new point between x_{k} and y_{k}, called w for the'moment, which will become either x_{k+1} or y_{k+1}. For this we .introduce the point

$$
\begin{aligned}
& \int_{\text {: }}^{z_{k}=} \begin{array}{l}
x_{k-1} \text { if } k \geq 1 \text { and } y_{k}=y_{k-1} \\
y_{k} \text { otherwise }
\end{array} \\
& \text { and consider first the seciant step } \\
& (24) \quad . \quad s=x_{k}-\frac{\left(x_{k}-z_{k}\right) f\left(x_{k}\right)}{f\left(x_{k}\right)-f\left(z_{k}\right)}
\end{aligned}
$$

provided it gives a better result than the bisection step

$$
m=x_{k}+\left(y_{k}-x_{k}\right) / 2
$$

In other words, since x_{k} is the current best approximation, s has to be between x_{k} and m. . At the same time, since x_{k}
is not yet within a given tolerance of the root, should differ from x_{k} at least by that tolerance.

Before we discuss the choice of s or m, a few words about the definition of z_{k} may be useful. The normally expected choice would be $z_{k}=y_{k}$. Here s represents a secant step based on the two current endpoints of the interval where the function values have different signs. This is called a regula-falsi step. Unless'round-off interferes; such steps do not lead out-of the interval and, since they have no subtractive-cancéllation problem in the denominator of (24), they are generally rather stable. But in situations, such as that shown in Figure 4, regular falsi steps may give very poor improvements of the interval. For this reason, we use in the case Qf $y_{k}=y_{k-1}, k \geq 1_{2}$ a secant step based on x_{k-1} and x_{k} : Such a step may lead'entirely out of the inferval and hence has to be carefully controlled, but it certainly. guarantees that there will be no long sequence of small steps of the type shown in the figure.

Figure 4.

In order to test convergence we use the tolerance function

$$
\operatorname{tol}(x)=\varepsilon|x|+\delta
$$

where $\varepsilon \geq 0, \delta \geq 0$ are given constants with $\varepsilon+\delta>\overline{0}$. For. $\dot{\varepsilon}=0$ the condition $\left|x-x^{*}\right|<t o l_{n}(x)$ requires the absolute error $\left|x \cdot x^{*}\right|$ to be below δ
while for $\delta=0$ it forces the relative error

With this we. set now $w=s$ if s is between $t=x_{k}+\operatorname{sign}\left(y_{k}-x_{k}\right)$ tol $\left(x_{k}\right)$ and m, and $w=t$ if s is between x_{k} and t. In all other_cases, $w=m$ is chosen, that is, we take a bisection step.

Thus in either case we have settled on a value of w. If sign $f(-w) \neq \operatorname{sign} f\left(y_{k}\right)$ then the interval between w and y_{k} is our new interval, otherwise the interval between x_{k} and w is chosen. This completes one step of the process.

We terminate the algorithm if the length of the interval between x_{k} and m is less than tol $\left(x_{k}\right)$, that, is, if $\left|y_{k} \cdots x_{k}\right| \leq 2$ tol $\left(x_{k}\right)$ This fits with-our choice of the minimum step. $w=t$ wheq s is between x_{k} and t. In fact; if we have not yet onverged then

$$
\left|m-x_{k}\right|>\operatorname{tol}\left(x_{k}\right)=\left|t-x_{k}\right|
$$

and thus also in thís case w, is always between x_{k} and m.
; For the implementation of the process we have to

* take çare; that the division incthe secant step (24) does not produce overflow or ynderflow. For this we compute the numerator and denominator。'

$$
p \nsubseteq\left(x_{k}-y_{k}\right) f\left(x_{k}\right), q=f\left(y_{k}\right) \cdots f\left(x_{k}\right)
$$

separately and then test

$$
\because \quad \frac{1}{2}\left|y_{k}=x_{k}\right||q|^{\circ} \geq|p| \cdot \geq|q| \operatorname{tol}\left(x_{k}\right)
$$

o determine whether s will ${ }^{8}$ be between t and m.
The overall algorithm can now be formulated as follows.

$$
\begin{align*}
& \text { 1. Input }\{x, y, \varepsilon, \delta, k m a x\} \text {; } \\
& \text { 2. } z:=y \text {; } \\
& \text { 3. } \cdot \mathrm{k}:=0 \text {; } \\
& \text {, } 4 \text {. - If }(|f(x)|>|f(y)|) \text { then } z:=x ; x:=y ; y:=z \text {; } \\
& \text {. 5.. Print }\{k, x, y\} \text {; } \\
& \text { 6. } \therefore \text { tol:= } \varepsilon|x|+\delta ; \text { ÁU. } \tag{20}
\end{align*}
$$

7. If $(|x-y| \leq 2$ tol) then normal return;
8. $\underline{I f}(k>k \max)$ then error return " h max evcecded";
9. $\mathrm{k}:=\mathrm{k}+1$ -
10. , $\mathrm{p}:=(\mathrm{x}-2) \mathrm{f}(\mathrm{x})$;
11. $q:=f(z)-f^{\prime}(x)$;
12. If $(p<0)$ then $p:=-p ; q:=-q$;
13. 2: $=x$;
14. If $(p \leq|q| t o l)$ then $x:=x+\dot{s i g n}(y-x)$ tol
else if $\left(p<\frac{1}{2}(y-x) q\right)$ then $x:=x+p / q$ clse $x:=x+(y-x) / 2 ;$
15. If $(\operatorname{sign} f(x)=\operatorname{sign} f(y))$ then $y:=2$;
16. Go to ${ }^{4}$;

As an example we give in Table 5 the solution of Equation (23) with $\varepsilon=0, \delta=0.5 \times 10^{-6}$, and, the starting interval $x^{\circ}=0.5, y=2.0$. The straight bisection method uses in this case about 21 steps.

Table 5

The process does not always perform that well In fact, for instance, for Equation (22), with $m=19$ and $\lambda=0, y=10^{2} \cdot \varepsilon=0, \delta=0.5 \cdot 10^{-6}$ it requires several thousand steps. (Even for $\delta=0.5 \cdot 10^{-3}$ a total of 121 stepe are taken). The reason is that for a long tame the algorithm uses only the minimal stepe of length tol $\left(x_{k}\right)$.

Various remedies have been proposed for this problem. The easiest approach is to force periodically some brsection steps. For instance, we may simply add a test between steps 12. and '13. which forces a bisection step if k is a multiple of some fixed period M and then bypasses step 13." More sophisticated is a test every M steps which determines whether the interval at the beginning of the period has been reduced at least by the factor 2^{M} corresponding to M bisection steps. We. leave the details as an exercise.

Exercise

1. If a computef is available implement the process described in this section. Test it with the example, of Table 5 , then use it to solve the equations of section $1 . .^{\prime \prime}$
2. Introduce in your program a forced bisection step when the iteration index k is a multiple of some integer $M>1$.
Apply the resulting process to Equazion (22) and experiment with different values of M.
3. Instead of the approach of Exefcise 2 introduce aretiodic check comparing the actual reduction of the interval with the expected reduction by means of the bisection method. Compare the performance with that of the process developed

* \quad in Exercise 2 above.

The literature on the numerical solution of nonlinear/equations is very extensive. Most standard texts on "numerical analysis contain material on the topic and give further references. Some monographs solely devoted to iterative methods for nonlinear equations in one as well as several variables are [1] - [4].

The method described in Section 6 was originally deyeloped by T. J. Dekker [5]. Various improvements and modification, including those mentioned at the end of the section are discussed, for example, in [6]-[8].
[1] A. S. Householder, The numerical trèatment of a single nonlinear equation, McGrawhill, New York 1970.
[2] J. Ortega, W. Rheinboldt: Iterative methods for nonlinear equations in several variables, Academic Press, Inc. 1970.
[.] .. A. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic Press, Inc. 1973.
[4] J. Traub, Iterative methods for the solution of equations, Prentice Hall, Inc. 1964.
[5] T. J. Dekker, Finding a zero by means of successive linear interpolation, in "Constructive Aspects of the Fundamental Theorem of Algebra" ed by B. Dejon, P. Henrici, Wiley-Interscience, London 1969:
[6] R. P. Brent, An algorithm with guaranteed convergence for finding a zero of a function, Computer Journal 14, 4 1971, 422-425.
[7] J. C. P. Bus, T. J. Dekker, Two efficient algorithms with guaranteed convergence for finding a`zero of a function, ACM Tráns. on Math. Software 1, 4, 1975, 330-345.
[3] G. H. Gonnet, On the structure of zero finders, BIT 17, 1977, 170-183.
,

Section 1

$\because 1 . \quad(a) \quad 1+x e^{-x}=0$.
(b) $x^{19}=1$.
2. (a) $\frac{1}{x \log x}=\log \frac{\log 3}{\log 2}=10.63289$.
(b) $x+e^{x}=e-\frac{1}{2}=2.21828$.

Section 2

1. $x^{*}=\frac{1}{k \pi}, k=1,2, \ldots$ and $x^{*}=0$.
2. For $f(u)=\ell-u \neq e \sin u$ we have $f(0)=\ell$ and $\dot{f}(-\pi)=\ell+\pi>0, f(\pi)=\ell ; \pi<0$.
Thus for $0<\ell<\pi$ we may use the interval $0_{0} \leq u \leq \pi$. and for $-\pi<\ell<0$ the interval $-\pi \leq u \leq 0$.
3. For ${ }^{\circ}$ the critical calues p_{c} and T_{c} the van der waal polynomial (3) reduces to

$$
0=v^{3}-9 b v^{2}+27 b^{2} v-27 b^{3}=(v-3 b)^{3}
$$

and thus has only one triple root $\mathrm{v}_{c}=3 b$. From $v_{c}=3 b$ it follows that $b=v_{c} / 3$ and hence from the formula for $\overrightarrow{p_{c}}$ we obtain $a=27 p_{c}\left(v_{c} / 3\right)^{2}=3 p_{c} v_{c}^{2}$.
Now the expression for T_{c} gives $R=24 p_{c} v_{c}^{2} /\left(9 T_{c} v_{c}\right)=$ $(8 / 3) \mathrm{p}_{\mathrm{c}} v_{\mathrm{c}} / \mathrm{T}_{\mathrm{c}}$. $\dot{B y}$ subs \ddagger ituting these quantities into (2) we find that

$$
\left(\frac{w^{\prime}}{3}+\frac{3 p_{c} v_{d}^{2}}{v^{2}}\right)\left(v-\frac{v_{c}}{3}\right)^{3}=\frac{8}{3} p_{c} v_{c} \frac{T}{T}
$$

* which leads to the stated dimensionless equation after
\rightarrow multiplication by $3 /\left(p_{c} v_{c}\right)$.

Section 3

3. ${ }_{\mathrm{f}}(-2)=-2, \mathrm{f}(-1)=3, \mathrm{x}^{*} \pm-1.7693$.

Section 4

1. The iterates are in sequence
$2.0,1.5,1.4988490,1.4987012,1.4987011$
and the last number is correct to eight digits.
2. The iterates are in sequence
-1., -.68393972, -. $57745448,-.56722974,-.56714330$
and the last number is correct to eight digits.
3. A simple informal program for this might look as follows:

* 1. .Input $\left\{x, n, a_{0}, a_{1}, \ldots, a_{n}^{a}\right.$, kmax, big, toil\} ; ~

2. $\mathrm{k}:=0$;
3. Print $\{k, x\}$;
4. $\mathrm{k}:=\mathrm{k}+1$;
5. $p:=a_{n}$;
6. prime:= p;
7. For $\mathrm{i}=\mathrm{n}-1, \mathrm{n}-2, \ldots, 1$ do $7.1 \mathrm{p}:=\mathrm{p} \times \mathrm{x}+\mathrm{a}_{\mathrm{k}}$; 7.2 prime: $=$ prime $\times x+p ;$
8. $\mathrm{p}:=\mathrm{p} \times \mathrm{x}+\mathrm{a}_{0}$;
9. If ($|\mathrm{p}|>\mid$ prime $\mid \times$ big) then error return 1 :
"Excessive step";
10. If $|\mathrm{p}|$ < |prime $\mid \times$ toil) then normal return;
11. $\mathrm{x}:=\mathrm{x}$ - p/prime;
12. If $k<k m a x$ then go to 3
else error return 2: "kmax exceeded";

Section 5

1. By (17) we have

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{\dot{a}}{x_{k}}\right)
$$

and thus

$$
x_{k+1}-\sqrt{a}=\frac{1}{2 x_{k}}\left(x_{k}^{2}-2 x_{k} \sqrt{a}+a\right)=\frac{1}{2 x_{k}}\left(x_{k}-\sqrt{a}\right)^{2}
$$

as well as

$$
x_{k}-x_{k+1}=\frac{1}{2}\left(x_{k}-\frac{a}{x_{k}}\right)=\frac{1}{2 x_{k}}\left(x_{k}^{2}-a\right)
$$

Hence for all $k \geq 0$ we have the implications

$$
\begin{aligned}
x_{k}>0, x_{k} \neq \sqrt{a} & \Rightarrow x_{k+1}>\sqrt{a} \\
x_{k}>\sqrt{a} & \Rightarrow x_{k}>x_{k+1}
\end{aligned}
$$

from which the stated inequalities follow directly by induction.
2. By (16) we have

$$
x_{k+1}=\frac{x_{k} x_{k-1}+a}{x_{k}+x_{k-1}}
$$

and thus

$$
\begin{aligned}
x_{k+1}-\sqrt{a} & =\frac{1}{x_{k}+x_{k-1}}\left[x_{k} x_{k-1}-\sqrt{a}\left(x_{k}+x_{k-1}\right)+a\right] \\
& =\frac{1}{x_{k}+x_{k-1}}\left(x_{k}-\sqrt{a}\right)\left(x_{k-1}-\sqrt{a}\right)
\end{aligned}
$$

as well as

$$
x_{k}-x_{k+1}=z^{2} \frac{1}{x_{k}+x_{k-1}}\left(x_{k}^{2}-a\right)
$$

Hence for $k \geq 1$ we have here the implication

$$
x_{k-1}>\sqrt{a}, x_{k}>\sqrt{a} \Rightarrow x_{k}>x_{k+1}>\sqrt{a}
$$

and the stated result follows directly by induction.
3. Newton's method here has the form

$$
x_{k+1}=x_{k}-\frac{x_{k}^{19}-1}{19 x_{k}^{18}}=\frac{18 x_{k}^{19}+1}{19 x_{k}^{18}}=\frac{18}{19} x_{k}+\frac{1}{19 x_{k}^{18}}
$$

Even for $x_{k}=1.1$ the second term on the right is only of the order of $1 / 100$, and hence until then the principal reduction comes principally from the first term. For $x_{1}=13,797.53$ we have

$$
\left(\frac{18}{19}\right)^{k} \cdot x_{1} \leq 1.1
$$

for $k=175$.

Section 6

3. An informal program incorporating such a periodic check might look as follows:
4. "Input $\{x, y, \varepsilon, \delta$, max $\}$;
5. $m:=0$;
6. length: $=|y \bullet x|$;
7. $2:=y$;
8. $\mathrm{k}:=0$;
9. If $(|f(x)|>|f(\dot{y})|)$ then $z:=x ; x:=y, y:=z$;
10. Print $\{k, x, y\} ;$
11. tola: $=\varepsilon|x|+\delta$;
12. If $(|x-y| \leq 2$ told then normal return;
13. If ($k>k m a x$) then error return "kmax exceeded";
14. $\mathrm{k}:=\mathrm{k}+\mathrm{l}$
15. $p:=(z-x) f(x)$
16. $q:=f(z)-f(x)$
17. If $(p<0)$ then $p:=; p ; q:=-q$;
18. $\mathrm{z}:=\mathrm{x}$;
19. $m:=m+1$
20. If $(m \geq 4)$ then if ($16|y-x| \geq$ length $)$
then $x:=x+\frac{1}{2}(y-x) ;$ go to ${ }^{2} 20$;
else m:=0; length: $=|y-x|$
21. If $(p \leq|q| t o 1)$ then $x:=x+\operatorname{sign}(y-x)$ tod

$$
\text { else if }\left(p<\frac{1}{2}(y-x) q\right)
$$

then $x:=x+p / q$
else $x:=x+\frac{1}{2}(y-x)$
19. If $(\operatorname{sign} f(x)=\operatorname{sign} f(y))$ then $y:=z$;
20. Go to 6

53

Student: If you have trouble wit \dot{b}^{∞},
out this form and take it to your please fill you give will help the author to revise the unit.
Your Name

\therefore

$\because 3$

Instructor: Please indicate your resolution of the difficulty in this box. Corrected errorsiinsmaterials. List corrections here:

Gave student better explanation, example, or procedure than in unit. Give brief outline of your addition here:
,

Assisted student in acquiring general, leafing and problem-solving skills (not using examples. from this unit.)

Instructor's Signature
\qquad Unit No. \qquad Dàte \qquad

Institution

\qquad Course No. \qquad
Check the chpice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?

Not enough detail to understand the unit
Unit would have been clearer with more detail
Appropriate amount of detail.
 Too much detail; I was often distracted \qquad
2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps Sufficient.information was given to solve the problems
_ Sample solutions were foo detailed;.,I didn't need them
3. Except for fulfilling the prerequisites, how much did you use other sources (for example, instructor, friends, or other books) in order to understand the unit?
\qquad A Let. \square Somewhat

A Little Not at all
4. How long was this unit in comparison to the amount of time you generally spend on a lesson (lecture and homework assignment) in a typical math or science course?

5. Were any of the following parts of the unit confusing or distracting? (Check as many as apply.)

Prerequisites
Statement of skills and concepts (objectives)
Paragraph headings
Examples
Special Assistance Supplement (if present)
Other, please explain
6. Were any of the following parts of the unit particularly helpful? (Check as many as apply.)

Prerequisites.
Statement of skills and concepts (objectives)
Examples
Problems -
Paragraph hgadings
Table Contents
Special Assistance Supplement (if present)
_Other, please explain
Please describe anything in the unit that you did not particularly like.

- Please describe anything that you found particularly helpful. (Please use the back of this sheet if you need more space.)

Corrections
UMAP Module 264
p. 20, line-12

$$
p=\left(x_{k}-z\right) f\left(x_{k}\right), q=f(z)-f\left(x_{k}\right)
$$

p. 21, lines 1 to 11

7: If $(|x-y|-2$ tol) then normal return;
8. If $\left(k>k_{\max }\right)$ then error return " $k \max$ exceeded";
9. $k:=k+1$
10. $p:=(x-z) f(x)$;
11. $q:=f(z)-f(x)$;
12. If $(p<0)$ then $p:=-p ; q:=-q$;
13. $z:=x$;
14. If $(p \leq|q|$ tol $)$ then $x:=x+\operatorname{sign}(y-x)$ tol
else if $\left(p<\frac{1}{?}(y-x) q\right)$ then $x:=x+p / q$
else $x \overline{=}=x+(y-x) / 2 ;$
15. If $(\operatorname{sign} f(x)=\operatorname{sign} f(y))$ then $y:=z$;
16. Go to 4;
p. 21, line 13, Equation (23) with $\varepsilon=0, \ldots$
p. 27, line 11-23,
11. $k:=k+1$
12. $p:=(z-x) f(x)$
13. $q:=f(z)-f(x)$
14. If $(p<0)$ then $p:=-p ; q:=-q ;$
15. z:=x;
16. $m:=m+1$
17. If $\left(\mathrm{m}_{\mathrm{c}} \geq 4\right)$ then if $(16|y-x| \geq$ length $)$
then $x:=x+\frac{1}{2}(y-x) ;$ go to $20 ;$
else $m:=0$; length $:=|y-x|$
\therefore 18. If $(p \leq|q| t o l)$ then $x:=x+\operatorname{sign}(y-x)$ tor

$$
\text { else if }\left(p<\frac{1}{2}(y-x) q\right)
$$

then $x:=x+p / q$.
else $\dot{x}:=x+\frac{1}{2}(y-x)^{*}$
19. If $(\operatorname{sign} f(x)=\operatorname{sign} f(y))$ then $y:=z$;
20. Go to 6

